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ABSTRACT

Previous investigations of wing-wake rcll-up have assuvmed
the wake to be a vort~x sheet of zero thickness. This immediately
leads to the conclusion that, as soon as the process starts, a
spiral of near axisymmetric form, with an infinite number of turns,
forms at the edge, as predicted by the work of Kaden, which must
apply to the early stages of rolli-up for any sheet of zero thick-
ness. In addition, most investigators, starting with Westwater,

have replaced the continuous vortex sheet by discrete vortex lines.

In this report, the aforementioned unrealistic features are
removed by assuming that the wake cross-section has a finite thick-
ness and some plausible shape. A two-dimensional method, analogous
to that of Westwater, is developed, assuming that the wake cross-
section contains vorticity in an otherwise irrotational field. The
wake is divided into triangular elements and the vorticicy in these
is determined by assuming a linear transverse velocity profile in
the wake and that the initial, unrolled wake moves downwards as
determined by the wing spanwise locading through cxdinary wing-wake
theory. Euler time-step integration is then used to calculate the
wake development under its own induced velocity field,ignoring

viscous dissipation.
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Three examples of the iritial stages of roil-up, for elliptic wakes

-

of thickness ratios .04, .05 and .06, are calculated. A finite spiral
structure is observed to develop and, within the range covered, the
thickness only seems to affect the number of turns in the spiral, other

parameters seeming to be almost unaffected.

Plans for ccntinuation of the work are discussed.
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wake cross-section at any station x.

initial wake cross-section at x = O,

aspect ratio of wing.

side of triangular element, opposite corner A, divided by s.

side of triangular element, opposite corner B, divided by s.

boundary of cross-section A.

boundary of cross-section A'.

wing lift coefficient.

side of triangular element, opposite corner ¢, divided by s.
x *

=F,nAAn .

total number of triangular elements in wake cross-section.

number of different values of €; .

number denoting a typical triangular element.

perimeter of S.

= |¢ - ¢g,l/s.
= |¢ - cBI/s.
= |¢ - ccl/s.

closed region with constant vorticity distribution.
wing semi-~span.

dimensionless time. See Equation (4).

free stream velocity.

element influence function. See Eguation (14).
velocity component in the y direction.

non-dimensional form of v. See Equation (3).
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i wn element influence function. See Equation (15).
‘ w velocity component in the =z direction.
w* non-dimensional form of w. See Equation (3).
‘4 w; - w; is the usual downwash calculated in the Treffz plane

for an unrolled wake.

l X streamwise coordinate.
i y spanwise coordinate positive to the right.
| *
Y = y/s.
r, z third coordinate of the right-handed set x, y, z.
| z* = z/s.
a = arg ( -~ CA) .
| ay =arg (L - g,)
} a, = arg (Cc - 5y)
‘ B =arg (¢ - gj) -
BA = arg (CA - CB) .
Bc = arg (cc - oyl
Y =arg (¢ - ) -
T = arg (CA - LC)
Yg = arg (CB = CC)
AAn area of nta triangular element.
o> = aa /s
at* dimensionless time step in numerical integration.
Av; contribution to v* from nth triancular element.
Aw; contribution to w* from nth triangular element.
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thickness ratio of elliptic wake cross-~section.

y + iz.

z at corner A of nth element.

¢ at corner B of nth element.

T at corner C of nth element.

...l*
=cs 'y °

-1 * *
tan ~(dz /dy )C' .

vorticity distribution within A -

* * * *
€ (t ,y ,z )non-dimensional form of §. See Equation (5).

constant value of & in nth triangle.

non-dimensional form of En .

constant value of & inside

S.

vorticity distribution within A'.

non~dimensional form of w.

See Equation (9).
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1. INTRODUCTION

Many investigators have studied the rolling-up of the vortex wake
behind a wing of finite span. The earliest step in this study was the

(1)

work of Kaden who found an analytical solution for the rolling-up
with time of a semi-infinite, straight, two-dimensional vortex sheet.
This solution must represent the situation very ciose to the edges of

a finite-span vortex sheet of zero thickness,in two or three dimensions,
during the initial stage of the rolling-up process. An important result
following from Kaden's work is that, from the very onset of rolling-up,
due to the infinite velocity at the sheet edge, a spiral of near-axi-
symmetric form, with an infinite number of turns, is established at the
edge. This is a consequence of the assumption of zero thickness for the

sheet.

(2)

Westwater considered a finite-span, zero-thickness wake result-
ing from an elliptically-loaded wing and acssumed that the roll-up could
be treated as a two-dimensional time-dependent process, where the con-
figurations at successive stages in time represent successively further
downstream sections of the wake,as fixed by the forward speed of the
wing multiplied by tlre time. This approach is evidently suitable for

wakes which roll up relatively slowly far behind the wing, such as are

found with high-aspect- ratio, unswept wings. Westwater further simplified

his calculations by replacing the contir.ious vortex sheet by a row of

(3)

infinite line vortices. Clements and Maull have recently used this

technique for non-elliptic span-loadings. Westwater's method is subject
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to cert2in numerical difficulties which have been the subject of a
number of investigations. A particularly careful recent review and study
(4)

of thkis matter is due to Moore » who develops a method for overcoming

the problen.

The line-vortex method has been extended to cover three-dimensional
effects, such as those cf bound vorticity and the finite origin and stream-
wise curvature of the wrailing vortices, by the use of the vortex-lattice

(5,6,7,8,9)

procedure . This leads to results applicable to low-aspect-

ratio and swept wings.

The present work is an attempt to remove the unrealistic features
of the earlier models, namely zero wake thickness and vorticity concentra-
ted on lines,by assuming that the wake vorticity is contained in a layer
of finite thickness with some plausible cross-sectional shape. The wake
flow is assumed to be two-dimensional and the rolling- up is studied via
the time-dependent development of this model, exactly as in Westwater's
work, so that we deal with a slow rolling-up taking place far behind the
wing, once more. The introduction of vorticity distributed continuously
throughout the wake cross-section enables us to obtain a more acceptable
picture of the initial rolling up phase than the infinite spiral of

Kaden.

Having selected an appropriate wake cross-section its area is divided
into triangular elements within each of which the vorticity is assumed
constant, and for which simple expressions giving the velocity field have

been derived (see Section 3). The strength of the vorticity within each
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triangle is determined using two assumptions:

(1) The vorticity is constant through the wake thickness. This
corresponds to an assumption that the transverse velocity
profile within the wake 1is linear,

(2) The periphery of the walze ic moving downwards with a
velocity determined by spanwise posxgion and wing spanwise

loading, exactly as in ordinary wing-wake theory.

Assumption (1) can evidently be removed at the cost of increasing

the number of triangular elements used.

Once the triangle strengths are found, the network of points
defining the wake is allowed to distort with time under its self-induced
velocity field, using Buler integration. During this process viscous
dissipation is neglected, so that the vorticity inside each triangle
remains constant, as will its area (due to continuity), even though

the shape changes.

Examples of the initial roll-up phase have been calculated fo-
three wakes of different thicknesses and elliptic cross-sections,
subjected to uniform downwash (ccrresponding to ellipric spanwise loading).
Details and results are given in Sections 5 and 6, and plans for future

work in Section 7.
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2., THE MATHEMATICAL MODEL

The mathematical model of the wake and the notation are illustrated
in Fig. 1.

The unrciled wake cross—section A', whose boundary is denoted by

C', stretches between y = - s and y =+ s in the plane x = (C. At

subsaguent stations x =x, the boundary is denoted by C and the wake has a
rolled up form of cross section A with vorticity distribution g{x,v,2) de-
termined by the original configuration of the wake cross-section, the
original vorticity distribution within it, ¢£(0,y,z), and the eiapsed

time x/U. It is assumed that

E(OIYIZ) = N(Y) ; (1)

corresponding to a linear variation with =z of the velocity, v, within

the initial wake section, if the wake is assumed thin.

We define dimensionless coordinates
* VA
Y
: = 2
zZ2 = (2)

and since a typical velocity of the flow in the wake cross-sectional
20C

TAR ,we also define dimensionless velocity components, time

plane is

and vorticity by

oo RN imRw (3)
L 2UCL
2C_x
* L
T2 Se— 14
t m.AR.S ! (4)
* % w T.AR.S * ok kX T.AR.S
o (y) = SRS Tyt < B (5)
L L
h -
1Y < ~
FETTET, — *




We assume chat @ ©Or » 1is determined by the boundary conditions:
' * * =
{a) w cosh - v sin) = Wi (v )cos~ (6)
on C'
* x
where (dz /4y )C' = tani, and
7
*2 *2 *2 *2 -
(b) NV w = 0 as\y +z - o> (7)
* =

- w_. (y ) is the non-dimensionalised Gownwash distribution in the
Treffz plane as calculated from the usual unrolled thin-wake iLheory.
* - - - - - - -
For exanple, W, = - 1 for elliptic spanwise loaé distribution. 1t
*

is readily shown that, in cthe general fornm, ¥; 1is dependent on the

*
form of the spanwise loading and y only (c.f. reference 3).

It now follows that for a giver initial wake cross-section and

*x *
spanwise loading, the velocities v and w of a given fluid

*
particle are functions of t only, so that the subsequent non- -

dimensional coordinates of the particles <onstituting the rolled wake

*
are functions of t only, determined by the differential eguations

*
* *
¥ -y Z__. (8)

~
l

The equations (8) are integrated numerically step b& step, starting

from the initial configuration, using Euler integration.

* *
It remains to determine the velocity field (v , w ) due to the

*
distribution £ within C.
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3. THE VELOCITY FIELD

At anv value of x, the two-dimensional velocity field, (v, w),
is determined by integrating the effects of point vortices cf strengtns

£(x,v.,z)dy dz over the area of the wake cross-section, A.

To facilitate the numerical calculations, A 1is divided into a
finite number of small triangular elements within each of which the
value c£ § 1is assumed constant. We now find expressions for Av;
and Aw; due to a typical element of this kind for points outside its
boundary, or approaching the boundary in a limiting sense. This enables

* *

us to calculate v and w for the assemblage of triangles at all
the node points of the triangular mesh, including internal nodes of
A, since such points may be regarded as being inside infinitesimal cavities
excluded from all the adjacent triangles, and we calculate, in effect, the

principal value of the velocity integral - which is precisely the required

definition of this integral inside the vorticity distribution.

The velocity field outside any area S containing a constant

vorticity distribution, ES ,may be written
B e
-155 dyldz1
2n y + iz - vy, - iz
is 1 1
Using Green's theorem, this may be converted to a line integral around

- (9)

v ~ iw =

P, the perimeter of S:

ig
s _ S - _ s
V- iw o= o n(g ' 1zl)dy1 (10)
P

where t = y + iz.

¥ N
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If (10) is appliec to a typical triangle of A ,0f area &A )
n

vorticity distribution streagth En and vertices defined by ¢_, CB'
Y

CC(Fig. 2), we obtain
-if 2A -z
- n n A
Av - itw = - — { — in(z - g.) +
w 1% CA)(CB-CA) A
G -z ;(;B— y nla=ba) + o f -)ic (s - ¢ )},
58 (848 tx%c CB-CC) C
(11)

gp and AAn are pboth invariant with the motion for an infinitesimal

triangle in incompressible flow, the product znAAn being the circulation

around the element.

*
If we now write szAA = AR then
n n’

2UsCy, + % ZUSCL
é':nAAl'l = TAR 2'-’nAAn= TAR Kn (12)
and if (see Fig. 2)
- = ie . L, = B . ., - iy A
g CA sr,e ; 14 CB srpe i C CC srce
[.~r. = sce "B i C.-r. = sbe’®C
B °A C "A (13)
- = J..BC . - _ lBA 7
CC CB sae 7 CA CB sceiY
r = chalYa _, =sae B
a~bc = sbe s % J
we obtain from (11)
K r
Av* = —E{—éisin(a—a -a_)&nr, + acos(o-o —a_ )] +
n T bc C B A C B
N:
+ 23{51n(B-BC—BA)2an + Bcos(B-BC-BA)] +
“c
+ plsin(y-v,-vp) dnx  + YCOS(Y-YA-YB)]}
* *
= KnVn(y /2 ) (14)

>
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A

K r
n, A .
Awn = :_{bc [cos(u-uc-us) anA - as:.n(o.-ac—uB)l +

X
B .
+ a[cos(B~SC—3A)ian - Ssm(B-BC-BA_)] +

X
c .
+ aiD[cosw—:A-YB) 2nrc - {sm(v-{A-Ya)]}
- * * -
= ann(y $Z ) . (15)

Hence we have the approximations

* n, M * %
v v L KV (y ,z) (16)
nn
n=1
¥ n, M * *
w v I KW (v ,z) (17)
1 n .
n=1




4. THE NUMERICAL PROCEDURE

Because of the spanwise symmetry of the initial cross-section,

A', and the assumption (1), the M wvalues of Kn are dependent on

*
~

a smaller number of values of € , 3&y N. The boundary condition
(6) is now applied at N suitable node points on the initial boundary
A' (excluding the tip points), using the expressions (16) and (17),

*

*
with unknown coefficients, Kn:= gp An ,thus yielding N linear

equations for the g; and hence the Kn. The eguations (16) and

(17) may now be used to evaluate v* and w* at all values of t*,
once the dimensionless coordinates of the triangles are known. These
are found step by step by numerical integration of the equations (8)
forward in time t*, starting with the known initial set of triangles
within A'. The development of the wake roll-up is thus calculated
step by step. The y* coordinate of the "centroid" of vorticity of
one half of the wake is calculated at each step. This should remain

(10)

constant and provides an accuracy check.

-
I

PEvENEEaS S

e

TR g — aaas”’ O e —— - Yo




-

e

- 10 -

5. THE WAKE OF ELLIPTIC CROSS~SECTION SUBJECT TO UNIFORM DOWNWASH

In this case the equation of ' is

* *
z z eJl -y 2 (18)

and

*
wp = - 1. (19)
Also

tan A =5 — L (20)

The cross-section A' 1s divided into triangular elements as

shown in Figure 3. It was found necessary to concentrate the triangles

near the tips. This was dcne as follows. Firstly a basic set of
spanwise stations was established by using an even number of equal
divisions of the eccentric angle coordinate

g = ccs—ly* (21)
across the span. Next, the segment at the tip vias further subdivided
into two equal © intervals and all resulting divisions were then
again subdivided into two for a specified number of the segments,
starting from the tips and moving inboard. Using the horizontal dia-
meter of the ellipse as another division line, triangles may then be
filled in as shown in Figure 3. g; is taken as constant over the
four triangles lying between any two vertical lines (at the tip - over
two triangles) and the same value is taken for the symmetrically
placed group on the other half wake. In the illustration, the span~

wise subdivision is 8 + 2 + 6, the number of triangles is 60 and the

*
number of different values of gn is 8. The points for applying the




-
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boundary cordition are shown circled.

An analytic solutiocn exists for the downward meoving elliptic
cylinder, which corresponds to the flow at t* = 0. The flow
calculated by the present methcd at t* = 0 was compared % his for
the three cases considered, namely, ¢ = .04, .05 and .06. 1In all
these cases, a subdivision of 40 + 2 + 8 spanwise gave results for
surface velocity, total amount of vorticity in one half wake and
spanwise position of centroid, which were considered to compare
adequately with the theoretical values and this distribution of
points was also found to be just adequate for describing the spiral
structure of the core up to the time reached in the calculation of
the roll-up. During the roll-up, the centroid position spanwise
remained constant to a high degree of accuracy for the range covered
(change not more than 1 part in 780). The total times covered were
t* = ,0128, .0160 and .0192 for the thickness ratios .04, .05 and .06,

respectively.

The appearance of the tip region is shown for various stages of
this initial roll-up in Figures 4,5, and 6 for & = .04, .05 and .06,
respectively and in Figure 7 one example of a complete half-wake is
shown. It should be noted that to clarify the inner detail of the
spiral, the vertical scale has been exaggerated in these figures and
this vertical scale is nct uniform throughout all the pictures. The

results are discussed in the next Section.

E e Y
.
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6. DISCUSSION AND RESULTS

*
The time step, At , used in the numerical integration was found

to be a critical parameter in the calculation, whereas the results
were not very sensitive to spanwise divisions, provided sufficient were
present near the tip to ensure enough points, at close enough spacings,
to describe the spiral structure. After some experiment, it was found
that the 40 + 2 + 8 subdivision gave results as gocd as thcse from
larger numbers of cells, although the need for further points near the

tip does not become evident at later stages in the spiral development.

As regards At*, if this is taken very small, chaotic moticn of the
points can develop after a large number of small steps have been taken
during the initial short period of high distortion rate of the wake
tip. This effect, which is not so critical later on in tne calculation,
appears to be due to accumulated errors resulting from neglect of the
distortions of the triangular elements at each step, distortions which
makes them increasingly curvilinear in reality. On the other hand, too
large a At* leads to incorrect wake shapes which are not substantiated
on reduction of the time step. There seems to be an optimum At* for

each thickness ratio which avoids chaotic motion and for which the wake

shape is relatively invariant with modest changes of this time step.

”
:

Another difficulty which occurred was overlap of triangular elements
(an event formally violating the equation of continuity of the motion).
This occurred either near the beginning of the roll-up, when the spiral

tip, turning inwards, occasionally crossed onto the main bedy of the




e

e st vt i,

W

- 13 -

wake, or, later on, within the turns of the spiral. 1In the former case
a cure could be effected by slightly decreasing At*, and in the latter
case more points should be incorporated near the tip. However, it was
found impossible to increase the number of points sufficiently to com-
pletely remove overlap within the spiral during the later stages when
the spiral coils stretch and wind up tightly. This is evidently a
difficulty inherent in the use of straight-sided elements to represent
a stretching spiral structure. It was found, however, that the shape
of smooth spiral curves drawn through the node points was not greatly
affected by the increase of points to avoid overlap, so it was con-
cluded that the true, smooth spiral shape was still given fairly
accurately by the node points even when a small amount of overlap
occurred, provided that the pattern formed a logical extension of
previous non-overlapping cases and that there was consistency between
neighbouring lines of the coil,that is between the original center-line,

which is shown dotted in the drawings, and the outer boundaries.

Using this approach, we are able to follow thz up to one and three-

quarter turns of the spiral, which occur in the present examples.

An analysis of the results shows that, for the range of thickness

ratios covered, for the elliptic cross-sectioned wake:

(1) Thickness has little effect on the amount of vorticity within
*
the core at a given t (Figure 8).
(2) Thickness has almost no effect on the size of the core at a

*
given t (Figure 9).

s

ta
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(3)

(4}

(5)
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Except in the very initial stages of roll-up, the core
is of an approximately elliptic shape with height/width
ratio about 6.8 for all three thickness ratios studied
(Figur= 10).

The number of turns of the spiral within the core at

a given t* increases with reduction of g, except

for very small values of t* when the spiral is, in
any case, ill-defined (Figure 11). About one and three-
quarter turns are observed for the € = .04 case at

t* = ,0128 and for the ¢ = .05 case at t* = ,0160,
and for the ¢ = .06 case at t* = .0192, just over

one and a half turns.

An interesting result observed in all three cases is
that the original tip point of the unrolled wake does
not become the tip point of the spiral; instead it
recedes back along the outer edge of the coil. This
appears to be true also for subsequent tip points of the
spiral - these do not remain at the tip but are dragged
back along the outer edge of the spiral in their turn
and their place is taken by cother points which were
originally more inboard along the upper edge of the

unrolled wake.

Y W -
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7. FUTURE WORK

It is hoped to extend the present work into the more complete
stages of the rolling-up and also to deal with different wake cross-

sections and spanwise loadings.

For the later stages of the roll-up it would appear almost
impossible to follow the spiral right into the center of the core
and it is quite likely that considerable overlapping of elements
may then occur there. Provided, however, that the outer winds of
the spiral remain orderly and consistent, this need not trcuble
us, since what matters is the presence of the correct amoun% of
vorticity in the core region, its precise location having little
effect on the outer spiral. In effect we will be employing,

(4)

automatically,the "condensing" procedure of Moore wherebye the

central part of the spiral is replaced by a point vortex,

Accuracy may, possibly, be improved by the use of curvilinear
triangular elements instead of straight sided ones and also by use
of a more sophisticated numerical integration method, such as the

Runge~Xutta method.

N T e e %
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Ispiral structure is .observed to develop .and, within the range covered, the
:thicknzss only scems to.affect the number of turns in the spiral, other

cross-section has a finite thickness and some jlausible shape. A -two-dimensional
method, analogous to that of Westwater, is developed, assuming that the wake
cross-section contains vorticity in an otherwise irrotational field. The wake
is divided int6 tt¥iaungular élements: and the vorticity in these is determined by
assuming a lincar transverse velocity profile in the wake and that the initial,
unroiled -wake moves downwards as determined by the wing spanwise loading
through:-ofdinary wing-wake theory. Euler time-step integration is then used to
calculate the wake development under its own induced velocity field, ignoring
viscous -dissipation. ~Ihrce examples of the initial stages ofmxgit:up, for
telliptic wakes of thickness ratios U405 and *V are calculated.,™A finite

‘parameters seeming to be almost unaffected. Plans for coatinuation of the
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